Monday, October 29, 2018

Economics of Fishing the High Seas


                                                       Comments due by Nov. 5, 2018
 The total fisheries catch from the high seas in 2014 was 4.4 million metric tons, with an aggregate revenue (landed value of the catch in US$) of $7.6 billion. Five countries alone accounted for 64% of the global high-seas fishing revenue: China (21%), Taiwan (13%), Japan (11%), South Korea (11%), and Spain (8%). High-seas catch by country and FAO region significantly and positively increased with rising fishing effort (R2 = 0.46, P < 0.001) . Subtracting our estimated costs from the landed value of catch provides the first empirically based estimates of the net economic profit of fishing the high seas.
Globally, our estimates of high-seas fishing profits (without accounting for subsidies) ranged between −$364 million and +$1.4 billion . We estimated that governments subsidized high-seas fishing with $4.2 billion in 2014, far exceeding the net economic benefit of fishing in the high seas. This result suggests that without subsidies, high-seas fishing at the global scale that we currently witness would be unlikely (at the aggregate level), and that most of the negative returns accrue from China, Taiwan, and Russia . Coupling our estimates of profits with country-level subsidies suggests that subsidy-distorted high-seas profits range between $3.8 billion and $5.6 billion.
We conducted these calculations spatially, revealing that, even with subsidies and our lowest estimate of labor costs, 19% of the currently fished high seas cannot be exploited profitably at current rates . Assuming higher labor costs, and the fact that companies still receive subsidies, the area of unprofitability jumps from 19 to 30%. Finally, without subsidies and low wages to labor, the area of unprofitability shoots to 54%, implying that without subsidies and/or low labor compensation, more than half of the currently fished high-seas fishing grounds would be unprofitable at present exploitation rates.
The countries that provided the largest subsidies to their high-seas fishing fleets are Japan (20% of the global subsidies) and Spain (14%), followed by China, South Korea, and the United States . It is remarkable that in these cases, the subsidies far exceed fishing profits, with the extreme being Japan, where subsidies represent more than four times our estimate of their high-seas profits. For 17 countries, contributing 53% of the total high-seas catch, current extraction rates would not be profitable without government subsidies . Among these countries, China and Taiwan alone account for 47% of the total high-seas catch, which is significant. Whether subsidies enable profitability or not, the magnitude of subsidies and the fact that many of these subsidies lower the marginal cost of fishing suggest that high-seas fishing activity could be markedly altered in their absence.
Targeting mainly large mobile, high-value fishes such as tuna and sharks, are the most profitable high-seas fisheries . All other fisheries are either barely profitable or unprofitable. We estimate that deep-sea bottom trawling would not be globally profitable at current rates without government subsidies, with maximum annual losses of $230 million before subsidies. Similarly, squid jiggers would be, on average, very unprofitable without subsidies, with maximum annual losses estimated at $345 million.
By and large, fishing the high seas is artificially propped up by an estimated $4.2 billion in government subsidies (more than twice the value of the most optimistic estimate of economic profit before subsidies are taken into account). The economic benefits vary enormously between fisheries, countries, and distance from port. On aggregate, current high-seas fishing by vessels from China, Taiwan, and Russia would not be profitable without subsidies. This is globally significant since these three countries alone account for 51% of the total high-seas catch. Other countries exhibit annual profits ranging from negligible to $250 million, which were increased substantially by subsidies (for example, Japan, Korea, Spain, and the United States). Surface fisheries for pelagic species such as tuna were profitable, whereas most other fisheries barely broke even, and squid jigging (mostly concerning Chinese and Taiwanese fleets) and deep-sea bottom trawling were generally unprofitable without subsidies. Some national fisheries in specific regions were unprofitable even after government subsidies are taken into account.
Overall, we conjecture that fishing the high seas could become rational for the most unprofitable fisheries due to a combination of factors including the following:
(i)            currently available catch data continue to underrepresent real catches,
(ii)          vessels fish only part of the time in the high seas and make most of the economic benefit from fishing in EEZs,
(iii)         government subsidies not accounted for in this analysis,
(iv)         reduced costs because of unfair wages or forced labor, and
(v)          reduced costs because of transshipment at sea.

 There may be additional market factors that are fishery-specific, that is, squid fishing by Chinese vessels in South America. Our results suggest that this fishery is unprofitable, but over 100 Chinese squid jiggers amass in January at the limit of Argentina’s EEZ to catch small Illex squid, before Argentina opens the season inside its EEZ. The low stock size and high demand for squid may allow Chinese companies fishing early in the season to charge higher prices. To these factors, we could add geostrategic reasons, where countries may fish in some regions as part of their long-term foreign policy strategy, regardless of the economic benefit. Examples of this strategy have been documented for Chinese and Russian fleets fishing in Antarctica. (Science Advances June, 2018)

Monday, October 22, 2018

A Conversation with Nordhaus, the first Nobel for work in Environmental Economics.





                                                         Comments due by  Oct. 29  , 2018

 William D. Nordhaus, the Yale economist who shared the Nobel in economic science this week, has pointed words for some of the experiments so far with his theories on taxing polluters to fight climate change.
“It was a catastrophic failure in the European Union,” he said just days after not only being awarded the Nobel, but also seeing his life’s work embraced in a landmark United Nations assessment of the global threat of climate change. That document, approved by more than 180 nations, described Professor Nordhaus’s ideas as essential for slowing the carbon dioxide emissions that are rapidly warming the atmosphere.
But in other places around the world — notably, parts of Canada and South Korea — politicians have adapted the idea in ways that not only show signs of working, but that also reframe it not as a tax, but as a financial windfall for taxpayers. Other governments, including China and some individual states in the United States, are also testing different ways to force companies to pay to pollute.
In short, the world is becoming a laboratory for theories that Professor Nordhaus developed decades ago, when global warming was an abstract future threat. By contrast, this week’s United Nations report amounts to a stark warning of immediate risk.
The report, from the Intergovernmental Panel on Climate Change, said that if greenhouse gas emissions continued unabated, the atmosphere would warm up to 1.5 degrees Celsius, or 2.7 degrees Fahrenheit, by 2040, leading to irrevocable damage including severe food shortages, coastal inundations and the displacement of tens of millions of people as soon as 2040. If the planet keeps warming to 2 degrees Celsius, or 3.6 degrees Fahrenheit, the effects could include devastating floods and droughts and the permanent loss of the world’s coral reefs.
The Nobel, which Professor Nordhaus shared with the New York University economist Paul M. Romer, was widely perceived as a rebuke to President Trump, who has called climate change a hoax and sought to roll back the United States’ existing climate change policies. It is also seen as a broader challenge to powerful Republican political voices in the United States, among them the libertarian billionaire brothers Charles and David Koch and the anti-tax activist Grover Norquist, who have attacked lawmakers who support a carbon tax, making it among the most volatile ideas in American politics.
On Wednesday, Professor Nordhaus discussed his carbon pricing theories and the political landscape. The exchanges have been edited and trimmed.
Why is carbon pricing seen as political poison in the United States?
It’s been caught up in the politics, and it just happens that this particular policy is one that has faced the wrath of a whole group of thinkers. Grover Norquist, energy companies, it’s the Koch brothers and their foundations, it’s people using fair tactics and foul tactics — it’s been caught up as one of the issues in the Great Divide.
This anti-tax movement has been so powerful and so harmful in the United States. There have been a large number of conservative economists in the United States who have endorsed the idea of a carbon tax.
Where has carbon pricing been successful? Where has it failed?
We learned with the European Union that once you go beyond the simple, idealized version of carbon prices and into implementation, it’s a very different thing. One of the things we found out: One of the problems with cap and trade [a system in which governments place a cap on countries’ carbon-dioxide pollution and companies then pay for, and trade, credits that permit them to pollute] is that it is dependent on predicting what future emissions will be. But if those projections are wrong, the system fails.
With the E.U., their projected carbon emissions were high, but the actual carbon emissions were low, and the carbon price fell drastically, from $30 to $40 per ton down to single digits. So the price was so low it did not have an effect in lowering emissions. It was flawed design. If the models had predicted too few emissions, and the price had gone to $1,000 per ton we would have had a different problem.The carbon tax has different problems, but not this one. The price of carbon is independent of the amount of emissions.
When I talk to people about how to design a carbon price, I think the model is British Columbia. You raise electricity prices by $100 a year, but then the government gives back a dividend that lowers internet prices by $100 year. In real terms, you’re raising the price of carbon goods but lowering the prices of non-carbon-intensive goods.
That’s the model of how something like this might work. It would have the right economic effects but politically not be so toxic. The one in British Columbia is not only well designed but has been politically successful.
What went wrong when President Obama tried to implement a carbon price in 2009?
I did not talk to Obama about this directly, but I spoke with many of his advisers over the years. One of my very, very few disappointments in Obama when he was president is that he did not come out in favor of carbon tax. I’m sure he did the political calculus on this. He should have come out and talked not just about climate change and its dangers but how to use a carbon tax to fix it. He was a great speaker a great educator but this is one where he let us down.
How do you think a carbon tax could get bipartisan support? Things change over the long run. What is toxic or opposed in one generation gradually becomes accepted in the next. Social security took a long time. It was opposed for many, many decades but since Reagan is has been widely accepted.
On carbon taxes, people’s views have changed from being very hostile, to conservative economists embracing this, to the I.P.C.C. saying, this is the approach. I have to be hopeful that, if we continue to work on this, the public will get there on the science, and make an exception to the toxicity of taxes. It will help if it’s tied to something popular — if, as a result of the revenue from a carbon tax, you get a check in the mail, or it funds health care.
In terms of implementation, it’s not much more difficult to implement than a gasoline tax. Gasoline taxes are very easy to implement.
But gasoline taxes are also politically toxic. Only in this country! In other countries, people are grown-up, and they can live with taxes. The problem is political, rather than one of economics or feasibility. It’s because it’s used as a weapon. At some point, I’m hopeful that grown-ups will take over and we will do what is necessary. I hope so. If we don’t, then things will just get worse and worse.

Sunday, October 14, 2018

Give up meat and dairy : the best thing you can do to help the planet.



                                                Comments due by Oct 21, 2018

Avoiding meat and dairy products is the single biggest way to reduce your environmental impact on the planet, according to the scientists behind the most comprehensive analysis to date of the damage farming does to the planet.
The new research shows that without meat and dairy consumption, global farmland use could be reduced by more than 75% – an area equivalent to the US, China, European Union and Australia combined – and still feed the world. Loss of wild areas to agriculture is the leading cause of the current mass extinction of wildlife.
The new analysis shows that while meat and dairy provide just 18% of calories and 37% of protein, it uses the vast majority – 83% – of farmland and produces 60% of agriculture’s greenhouse gas emissions. Other recent research shows 86% of all land mammals are now livestock or humans. The scientists also found that even the very lowest impact meat and dairy products still cause much more environmental harm than the least sustainable vegetable and cereal growing.
The study, published in the journal Science, created a huge dataset based on almost 40,000 farms in 119 countries and covering 40 food products that represent 90% of all that is eaten. It assessed the full impact of these foods, from farm to fork, on land use, climate change emissions, freshwater use and water pollution (eutrophication) and air pollution (acidification).
“A vegan diet is probably the single biggest way to reduce your impact on planet Earth, not just greenhouse gases, but global acidification, eutrophication, land use and water use,” said Joseph Poore, at the University of Oxford, UK, who led the research. “It is far bigger than cutting down on your flights or buying an electric car,” he said, as these only cut greenhouse gas emissions.“Agriculture is a sector that spans all the multitude of environmental problems,” he said. “Really it is animal products that are responsible for so much of this. Avoiding consumption of animal products delivers far better environmental benefits than trying to purchase sustainable meat and dairy.”
The analysis also revealed a huge variability between different ways of producing the same food. For example, beef cattle raised on deforested land result in 12 times more greenhouse gases and use 50 times more land than those grazing rich natural pasture. But the comparison of beef with plant protein such as peas is stark, with even the lowest impact beef responsible for six times more greenhouse gases and 36 times more land.
The large variability in environmental impact from different farms does present an opportunity for reducing the harm, Poore said, without needing the global population to become vegan. If the most harmful half of meat and dairy production was replaced by plant-based food, this still delivers about two-thirds of the benefits of getting rid of all meat and dairy production.
Cutting the environmental impact of farming is not easy, Poore warned: “There are over 570m farms all of which need slightly different ways to reduce their impact. It is an [environmental] challenge like no other sector of the economy.” But he said at least $500bn is spent every year on agricultural subsidies, and probably much more: “There is a lot of money there to do something really good with.”
Labels that reveal the impact of products would be a good start, so consumers could choose the least damaging options, he said, but subsidies for sustainable and healthy foods and taxes on meat and dairy will probably also be necessary.
One surprise from the work was the large impact of freshwater fish farming, which provides two-thirds of such fish in Asia and 96% in Europe, and was thought to be relatively environmentally friendly. “You get all these fish depositing excreta and unconsumed feed down to the bottom of the pond, where there is barely any oxygen, making it the perfect environment for methane production,” a potent greenhouse gas, Poore said.
The research also found grass-fed beef, thought to be relatively low impact, was still responsible for much higher impacts than plant-based food. “Converting grass into [meat] is like converting coal to energy. It comes with an immense cost in emissions,” Poore said.
The new research has received strong praise from other food experts. Prof Gidon Eshel, at Bard College, US, said: “I was awestruck. It is really important, sound, ambitious, revealing and beautifully done.”
He said previous work on quantifying farming’s impacts, including his own, had taken a top-down approach using national level data, but the new work used a bottom-up approach, with farm-by-farm data. “It is very reassuring to see they yieldessentially the same results. But the new work has very many important details that are profoundly revealing.”
Prof Tim Benton, at the University of Leeds, UK, said: “This is an immensely useful study. It brings together a huge amount of data and that makes its conclusions much more robust. The way we produce food, consume and waste food is unsustainable from a planetary perspective. Given the global obesity crisis, changing diets – eating less livestock produce and more vegetables and fruit – has the potential to make both us and the planet healthier.”
Dr Peter Alexander, at the University of Edinburgh, UK, was also impressed but noted: “There may be environmental benefits, eg for biodiversity, from sustainably managed grazing and increasing animal product consumption may improve nutrition for some of the poorest globally. My personal opinion is we should interpret these results not as the need to become vegan overnight, but rather to moderate our [meat] consumption.”
Poore said: “The reason I started this project was to understand if there were sustainable animal producers out there. But I have stopped consuming animal products over the last four years of this project. These impacts are not necessary to sustain our current way of life. The question is how much can we reduce them and the answer is a lot.” (CNBC Oct. 9, 2018)

Monday, October 8, 2018

Greenhouse gases Must be Scrubbed.



                                                     Comments due by Oct. 14, 2018

SWEDEN’S parliament passed a law in June which obliges the country to have “no net emissions” of greenhouse gases into the atmosphere by 2045. The clue is in the wording. This does not mean that three decades from now Swedes must emit no planet-heating substances; even if all their electricity came from renewables and they only drove Teslas, they would presumably still want to fly in aeroplanes, or use cement and fertiliser, the making of which releases plenty of carbon dioxide. Indeed, the law only requires gross emissions to drop by 85% compared with 1990 levels. But it demands that remaining carbon sources are offset with new carbon sinks. In other words greenhouse gases will need to be extracted from the air.
Sweden’s pledge is among the world’s most ambitious. But if the global temperature is to have a good chance of not rising more than 2ºC above its pre-industrial level, as stipulated in the Paris climate agreement of 2015, worldwide emissions must similarly hit “net zero” no later than 2090. After that, emissions must go “net negative”, with more carbon removed from the stock than is emitted.
This is because what matters to the climate is the total amount of carbon dioxide in the atmosphere. To keep the temperature below a certain level means keeping within a certain “carbon budget”—allowing only so much to accumulate, and no more. Once you have spent that budget, you have to balance all new emissions with removals. If you overspend it, the fact that the world takes time to warm up means you have a brief opportunity to put things right by taking out more than you are putting in.

Being able to remove carbon dioxide from the atmosphere is, therefore, a crucial element in meeting climate targets. Of the 116 models the Intergovernmental Panel on Climate Change (IPCC) looks at to chart the economically optimal paths to the Paris goal, 101 assume “negative emissions”. No scenarios are at all likely to keep warming under 1.5ºC without greenhouse-gas removal. “It is built into the assumptions of the Paris agreement,” says Gideon Henderson of Oxford University.
Climate scientists like Mr Henderson have been discussing negative-emissions technologies (NETs) with economists and policy wonks since the 1990s. Their debate has turned livelier since the Paris agreement, the phrasing of which strongly suggests that countries will need to invent new sinks as well as cutting emissions. But so far politicians have largely ignored the issue, preferring to focus on curbing current flows of greenhouse gases into the atmosphere. NETs were conspicuous by their absence from the agenda of the annual UN climate jamboree which ended in Bonn on November 17th.
In the short term this makes sense. The marginal cost of reducing emissions is currently far lower than the marginal cost of taking carbon dioxide straight from the atmosphere. But climate is not a short-term game. And in the long term, ignoring the need for negative emissions is complacent at best. The eventual undertaking, after all, will be gargantuan. The median IPCC model assumes sucking up a total of 810bn tonnes of carbon dioxide by 2100, equivalent to roughly 20 years of global emissions at the current rate. To have any hope of doing so, preparations for large-scale extraction ought to begin in the 2020s.
Modellers favour NETs that use plants because they are a tried and true technology. Reforesting logged areas or “afforesting” previously treeless ones presents no great technical challenges. More controversially, they also tend to invoke “bioenergy with carbon capture and storage” (BECCS). In BECCS, power stations fuelled by crops that can be burned to make energy have their carbon-dioxide emissions injected into deep geological strata, rather than released into the atmosphere.
The technology for doing the CCS part of BECCS has been around for a while; some scenarios for future energy generation rely heavily on it. But so far there are only 17 CCS programmes big enough to dispose of around 1m tonnes of carbon dioxide a year. Promoting CCS is an uphill struggle, mainly because it doubles the cost of energy from the dirty power plants whose flues it scrubs. Other forms of low-emission electricity are much cheaper. Affixed to bioenergy generation, though, CCS does something that other forms of generation cannot. The carbon which the plants that serve as fuel originally took from the atmosphere above is sent into the rocks below, making it a negative emitter.
The problem with afforestation and BECCS is that the plants involved need a huge amount of land. The area estimated ranges from 3.2m square kilometres (roughly the size of India) to as much as 9.7m square kilometres (roughly the size of Canada). That is the equivalent of between 23% and 68% of the world’s arable land. It may be that future agricultural yields can be increased so dramatically that, even in a world with at least 2bn more mouths to feed, the area of its farms could be halved, and that the farmers involved might be happy with this turn of events. But it seems highly unlikely—and blithely assuming it can be done is plainly reckless.
Negative thinking
Less land-intensive alternatives exist—at least on paper. Some are low tech, like stimulating the soil to store more carbon by limiting or halting deep-ploughing. Others are less so, such as contraptions to seize carbon dioxide directly from the air, or methods that accelerate the natural weathering processes by which minerals in the Earth’s crust bind atmospheric carbon over aeons or that introduce alkaline compounds into the sea to make it absorb more carbon dioxide.
According to Jennifer Wilcox of the Colorado School of Mines, and her colleagues, the technology with the second-highest theoretical potential, after BECCS, is direct air capture (see chart 2). This uses CCS-like technology on the open air, rather than on exhaust gases. The problem is that the concentration of carbon dioxide in the air, while very high by historical standards, is very low by chemical-engineering ones: just 0.04%, as opposed to the 10% or more offered by power-plant chimneys and industrial processes such as cement-making.

The technologies that exist today, under development by companies such as Global Thermostat in America, Carbon Engineering in Canada or Climeworks of Switzerland, remain pricey. In 2011 a review by the American Physical Society to which Ms Wilcox contributed put extraction costs above $600 per tonne, compared with an average estimate of $60-250 for BECCS.
Enhanced weathering is at an even earlier stage of development and costs are still harder to assess. Estimates range from $25 per tonne of carbon dioxide to $600. On average, 2-4 tonnes of silicate minerals (olivine, sometimes used in Finnish saunas because it withstands repeated heating and cooling, is a favourite) are needed for every tonne removed. To extract 5bn tonnes of carbon dioxide a year may require up to 20bn tonnes of minerals that must be ground into fine dust. Grinding is energy-intensive. Distributing the powder evenly, on land or sea, would be a logistical challenge to put it mildly.
Ideas abound on a small scale, in labs or in researchers’ heads, but the bigger mechanical schemes in existence today capture a paltry 40m tonnes of carbon dioxide a year. Most involve CCS and have prevented more carbon dioxide escaping into the atmosphere from fossil-burning power plants, rather than removing it. Removing 8bn-10bn tonnes by 2050, as the more sanguine scenarios envisage, let alone the 35bn-40bn tonnes in more pessimistic ones, will be a vast undertaking.
Progress will be needed on many fronts. All the more reason to test lots of technologies. For the time being even researchers with a horse in the race are unwilling to bet on a winner. Pete Smith of Aberdeen University speaks for many NETs experts when he says that “none is a silver bullet, and none has a fatal flaw.”
It will also not come cheap. WITCH, constructed by Massimo Tavoni of Politecnico di Milano, is a model which analyses climate scenarios. Unlike most simulations, it also estimates how much research-and-development funding is necessary to achieve roll-out at the sort of scale these models forecast. For all low-carbon technologies, it puts the figure at $65bn a year until 2050, four times the sum that renewables, batteries and the like attract today. Mr Tavoni says a chunk of that would obviously need to go to NETs, which currently get next to nothing.
Even the less speculative technologies need investment right away. Trees take decades to reach their carbon-sucking potential, so large-scale planting needs to start soon, notes Tim Searchinger of Princeton University. Direct air capture in particular looks expensive. Boosters note that a few years ago so did renewables. Before technological progress brought prices down, many countries subsidised renewable-energy sources to the tune of $500 per tonne of carbon dioxide avoided and often spent huge sums on it. Christoph Gebald, co-founder of Climeworks, says that “the first data point on our technological learning curve” is $600, at the lower end of previous estimates. But like the price of solar panels, he expects his costs to drop in the coming years, perhaps to as low as $100 per tonne.
However, the falling price of solar panels was a result of surging production volumes, which NETs will struggle to replicate. As Oliver Geden of the German Institute of International and Security Affairs observes, “You cannot tell the green-growth story with negative emissions.” A market exists for rooftop solar panels and electric vehicles; one for removing an invisible gas from the air to avert disaster decades from now does not.
Much of the gas captured by Climeworks and other pure NETs firms (as opposed to fossil-fuel CCS) is sold to makers of fizzy drinks or greenhouses to help plants grow. It is hard to imagine that market growing far beyond today’s total of 10m tonnes. And in neither case is the gas stored indefinitely. It is either burped out by consumers of carbonated drinks or otherwise exuded by eaters of greenhouse-grown produce.

There may be other markets, though. It is very hard to imagine aircraft operating without liquid fuels. One way to provide them would be to create them chemically using carbon dioxide taken from the atmosphere. It is conceivable that this might be cheaper than alternatives, such as biofuels—especially if the full environmental impact of the biofuels is accounted for. The demand for direct air capture spurred by such a market might drive its costs low enough to make it a more plausible NET.
From thin air
One way to create a market for NETs would be for governments to put a price on carbon. Where they have done so, the technologies have been adopted. Take Norway, which in 1991 told oil firms drilling in the North Sea to capture carbon dioxide from their operations or pay up. This cost is now around $50 per tonne emitted; in one field, called Sleipner, the firms have found ways to pump it back underground for less than that. A broader carbon price—either a tax or tradable emissions permits—would promote negative emissions elsewhere, too.
Then there is the issue of who should foot the bill. Many high-impact negative-emissions schemes make most sense in low-emitting countries, says Ms Wilcox. Brazil could in theory reforest the cerrado (though that would face resistance because of the region’s role in growing soyabeans and beef). Countries of sub-Saharan Africa could do the same in their own tropical savannahs. Spreading olivine in the Amazon and Congo river basins could soak up 2bn tonnes of carbon dioxide.
Developing countries would be understandably loth to bankroll any of this to tackle cumulative emissions, most of which come from the rich world. The latter would doubtless recoil at footing the bill, preferring to concentrate on curbing current emissions in the mistaken belief that once these reach zero, the job is done.
Whether NETs deserve to be lumped in with more outlandish “geoengineering” proposals, such as cooling the Earth with sunlight-reflecting sulphur particles in the stratosphere, is much debated. What they have in common is that they offer ways to deal with the effects of emissions that have already taken place. Proponents of small-scale, low-impact NETs, such as changes to soil management on farms, though, bridle at being considered alongside what they see as high-tech hubris of the most disturbing kind. NETs certainly inspire fewer fears of catastrophic, planetary-scale side-effects than “solar radiation management”.
But they do stoke some when it comes to the consequences of tinkering with the ocean’s alkalinity or injecting large amounts of gas underground. And the direct effects of large-scale BECCS or afforestation projects would be huge. If they don’t take up arable land, they need to take up pasture or wilderness. Either option would be a big deal in terms of both human amenity and biodiversity.
Another concern is the impact on politicians and the dangers of moral hazard. NETs allow politicians to go easy on emission cuts now in the hope that a quick fix will appear in the future. This could prove costly if the technology works—and costlier still if it does not. One study found that following a 2°C mitigation path which takes for granted NETs that fail to materialise would leave the world closer to 3°C warmer. Mr Geden is not alone in fearing that models that increasingly rely on NETs are “a cover for political inaction”.
Everything and the carbon sink
There is some progress. Academics are paying more attention. This year’s edition of “Emissions Gap”, an influential annual report from the UN Environment Programme, devotes a chapter to carbon-dioxide removal. Mr Henderson is leading a study of the subject for Britain’s Royal Society; America’s National Academy of Sciences has commissioned one, too. Both are due next spring. The IPCC will look at the technology in its special report on the 1.5ºC target, due next autumn.
There’s some money, too. Carbon Engineering has attracted backers such as Bill Gates, and now has a pilot plant in Canada. Climeworks has actually sold some carbon-offset credits—to a private investor and a big corporation—on the basis of the carbon dioxide it has squirrelled away at a demonstration plant it recently launched in Iceland. Earlier this year Britain’s government became the first to set aside some cash specifically for NETs research. In October America’s Department of Energy announced a series of grants for “novel and enabling” carbon-capture technologies, some of which could help in the development of schemes for direct air capture. Richard Branson, a British tycoon, has offered $25m to whoever first comes up with a “commercially viable design” that would remove 1bn tonnes of greenhouse gases a year for ten years.
All this is welcome, but not enough. The sums involved are trifling: £8.6m ($11.3m) in Britain and $26m from the Department of Energy. The offset sold by Climeworks was for just 100 tonnes. Mr Branson’s prize has gone unclaimed for a decade.
A carbon price—which is a good idea for other reasons, too, would beef up interest in NETs. But one high enough to encourage pricey moonshots may prove too onerous for the rest of the economy. Any price would promote more established low-carbon technologies first and NETs only much later, thinks Glen Peters of the Centre for International Climate Research in Oslo.
Encouraging CCS for fossil fuels as a stepping stone to NETs appeals to some. The fossil-fuel industry says it is committed to the technology. Total, a French oil giant, has promised to spend a tenth of its $600m research budget on CCS and related technologies. A group of oil majors says it will spend up to $500m on similar projects between now and 2027. But the field’s slow progress to date hardly encourages optimism. Governments’ commitment to CCS has historically proved fickle.
Last year Britain abruptly scrapped a £1bn public grant for an industrial-scale CCS plant which would have helped fine-tune the technology. For this to change, politicians must expand the focus of the 23-year-old UN Framework Convention on Climate Change from cutting emissions of greenhouse gases to controlling their airborne concentrations, suggests Janos Pasztor, a former climate adviser to the UN secretary-general. In other words, they must think about stocks of carbon dioxide, not just flows.
This is all the more true because emissions continue to elude control. After three years of more or less stable emissions, a zippier world economy looks on track to belch 2% more carbon dioxide this year. That amounts once again to borrowing more of the planet’s remaining carbon budget against future removal. It doesn’t take a numerate modeller like Mr Tavoni to grasp that, in his words, “If you create a debt, you must repay it.” The price of default does not bear thinking about. (Economist Nov. 2017)